
Introduction

 Nowadays, one of the most important issues regarding 
environmental challenges is global warming, which stems 
from trapping greenhouse gases (GHS) in the atmosphere, 
causing climate changes at any point of the world [1]. 
Energy-related carbon emissions, as the primary source of 

GHS, undertake the main responsibility for climate change 
and environmental degradation. However, slightly more 
than 40% of the global energy-related carbon emissions 
are attributable to emissions from electricity and heat 
production [2]. Thus, the carbon emissions from power 
industry are of major environmental concern.

As a supplier of national energy and power, the power 
industry is the pillar industry and the lifeblood of national 
economic development for China. Since implementation 
of the reform and opening up, the power industry has 
experienced more than 20 years of development and has 
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already become an important strength of the Chinese 
economy. But although the power industry has made 
remarkable progress, we cannot ignore the fact that it 
is suffering from serious problems such as high energy 
consumption and large-scale of carbon emissions. 

Data from the International Energy Agency (IEA) 
shows that China has become a big country in respect to 
carbon emissions [3]. Much of the blame should be down 
to the power industry. It turns out to be one of the biggest 
emitters of carbon, accounting for 40% of total carbon 
emissions in China [4]. Moreover, electricity plays an 
increasingly important part in terminal energy structure 
year by year. The proportion of the consumption of the 
electricity increased to 15.85% in 2014 from 9.62% 
in 1995. So it is noticeable that the power industry will 
be a major object of the work of energy conservation 
and carbon emissions reduction of the government. To 
shoulder the responsibility and accomplish the task, 
scientifi c and reasonable forecast models based on 
in-depth analysis of infl uencing factors is extremely 
important, and corresponding policies and measures must 
be implemented.

In the process of analyzing the infl uencing factors of 
carbon emissions, GDP needs to be deemed an important 
factor for consideration. The relationship between carbon 
emissions and economic growth is a special issue related 
to ecological environment and eco-environmental quality 
and economic development. Based on the hypothesis of 
the Environmental Kuznets Curve (EKC), many scholars 
go into this relationship [5-7]. Schmalesee et al. [5] 
studied the relationship between carbon emissions and per 
capita income in developed countries, and found that it 
resemble an inverted “U.” Arouri et al. [6] took Middle 
Eastern and North American countries for research 
objects and concluded that there is an inverted U-type 
EKC between economic growth and carbon emissions. 
Saboori et al. [7] selected Malaysia for investigation 
and further strengthened the evidence of an inverted 
U-type linking carbon emissions with economic growth. 
However, Galeotti et al. [8] and Wang et al. [9] confi rmed 
that the curve shape of the relationship carbon emissions 
and economic growth is like the shape of an “N.” Besides 
EKC hypothesis, co-integration and the Granger causality 
test are also extensively used to research the relationship 
between carbon emissions and economic growth. Wu et al. 
[10] corroborated that mass fossil energy consumption is 
the primary cause of rapidly increasing carbon emissions 
and it exists as a co-integrated relationship between 
carbon emissions and economic growth by using the co-
integration test and the Granger causality test.

Besides GDP, carbon emissions are affected by other 
factors as well. Taking Beijing as an example, Mi et al. 
[11] proved that the optimization and readjustment of 
industrial structure could be expected to eventually limit 
energy consumption and carbon emissions. Daly et al. 
[12] found that the progress of a technological level plays 
an important role in the reduction of carbon emissions in 
the United Kingdom. Muhammad Shahbaz [13] applied 
the ARDL bounds testing approach to examine the long 

relationship between urbanization and carbon emissions 
in the presence of structural breaks and found that the 
relationship between urbanization level and carbon 
emissions is positive in the United Arab Emirates. Fan 
et al. [14] adopted the STIRPAT model to analyze the 
impact of population on carbon emissions in China. Apart 
from that, Su and Ang [15] decomposed China’s carbon 
emissions into emission intensity, energy structure, and 
energy intensity with the structural decomposition analysis 
approach, and demonstrated that the decline in carbon 
emission intensity is largely inhibited by the increase of 
carbon emissions. In addition to the infl uencing factors, 
trade [16], imports, and exports [17] are also the driving 
factors of carbon emissions.

The second one is based on various methods to 
forecast carbon emissions. Wang and Dang [18] improved 
the traditional model of GM (1, 1) and researched carbon 
emission prediction in China’s Jiangsu Province. Wang 
[19] divided the data of Chinese gross domestic product 
and carbon emissions from fossil energy consumption 
of 1953-2013 into 15 stages and used the non-linear 
grey model to quantify future Chinese carbon emissions 
from 2014 to 2020. Du et al. [20] verifi ed that Chinese 
provincial carbon emissions can be classifi ed into fi ve 
categories by K-means clustering algorithm and forecasted 
provincial carbon emissions from 2011 to 2020 by the 
logistic model. Sun [21] classifi ed Chinese total carbon 
emissions in accordance with industry and analyzed the 
carbon emissions trend of residential consumption and 
the three major industries, which include the primary, 
secondary, and tertiary industries, and predicted different 
types of carbon emissions by least squares support vector 
machine (LSSVM). Liu et al. [22] forecasted the gross 
carbon dioxide in China from 2013 to 2020 by employing 
the system dynamics model. Gambhir et al. [23] adopted 
the hybrid modeling method to forecast Chinese carbon 
emissions in 2050. According to the mentioned forecasting 
results, we know that gray prediction, logistic model, and 
artifi cial intelligent algorithm models are widely applied 
into carbon emissions, and any of them have their own 
characteristics and spheres of application.

In contrast to other methods, scenario analysis is 
becoming more and more popular in the research fi eld of 
carbon emissions. Compared with the previous literature, 
it may therefore be concluded that an enormous amount of 
research on carbon emissions focuses on the national and 
regional levels, but there have been fewer studies related 
to carbon emissions of the power industry for China. 
Zhang [24] explored the carbon emissions reduction 
potentials for China’s power industry under different 
scenarios by employing the long-range energy alternatives 
planning (LEAP) model. Yuan [25] designed two energy 
conservation and emissions reduction scenarios to study 
the future energy conservation potential of China’s 
electricity sector.

In this paper, the principal purpose of the study is 
to forecast carbon emissions of China’s power industry 
based on scenario analysis. In order to improve the 
precision of the prediction, a hybrid model, which 
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combines improved particle swarm optimization (IPSO) 
and support vector machine (SVM), is adopted to predict 
carbon emissions. The parameters in SVM are optimized 
by IPSO to guarantee the generalization and learning 
abilities of the SVM model. To identify and construe the 
major infl uencing factors regarding carbon emissions of 
China’s power industry – which will be considered as the 
appropriate inputs of the proposed model – we conducted 
grey relativity analysis (GRA).

Material and Methods

Calculating Carbon Emissions

Since China does not promulgate yearly carbon 
emissions for the power industry, this paper works out the 
raw data of power industry consumption carbon emissions 
from 1995 to 2014 through the conversion of energy 
combustion acquired from the China Energy Statistical 
Yearbook. It is noteworthy that almost no carbon is emitted 
in the use of solar, wind, or any renewable source of 
energy, so we just consider fossil energy in the calculation 
process of carbon emissions for China’s power industry. 
Besides that, it is assumed that the oxidation rate of each 
fossil energy is set at 100%.

On the basis of statistical defi nitions by the standards of 
the National Statistical Bureau, in this paper fossil energy 
is divided into three categories (coal and its products, oil 
and its products, and gas and its products) and combustion 
values of different kinds of energy are obtained for 
the power industry from the China Energy Statistical 
Yearbook. To ensure the comparability of measurement 
results, carbon emission coeffi cients of various types of 
energy adopt the recommended value of IPCC [26]. The 
specifi c calculation formula of carbon emissions is as 
follows:

         (1)

…where C represents carbon emissions emitted from the 
power industry, i refers to fossil fuel types, ρ is energy 
consumption, γ is the conversion coeffi cients of standard 
coal, and k is the carbon emissions coeffi cient.

On this basis, values of China’s power industry carbon 
emissions from 1995 to 2014 are shown in Fig. 1. During 
this period, it illustrates that power industry carbon 
emissions increased from 25,059.65 kt to 108,805.75 kt, 
with an average annual growth of 16.71%.

 
Grey Relativity Analysis (GRA)

Due to the infl uences of socioeconomic development 
and the changes in policy environment, the numerous 
factors that could act on carbon emissions for the power 
industry tend to be nonlinear and nonstationary. And it 
is conceivable that the whole infl uencing factors can’t 
be taken into account in forecasting carbon emissions 
for the power industry. Aiming at the characteristics of 
power industry carbon emissions, this paper identifi es 
GDP, urbanization rate, total electricity consumption, the 
net coal consumption rate, and thermal power installed 
capacity as the major infl uencing factors based on the 
existing research. The related data is acquired from the 
China Statistical Yearbook and China Industrial Statistical 
Yearbook. Excluding price effect, the GDP is converted 
to 1978 prices by a GDP implicit defl ator. Then the 
correlation degree of each factor and carbon emission is 
measured by the method of grey relativity analysis.

Grey relativity analysis is a theoretical method of grey 
system theory to judge the development trend of a selected 
system according to qualitative analyses and comparison. 
It can be used to obtain the grey correlation degree between 
reference sequence and comparison sequence through 
the comparison of geometric similarity of time series 
data in the system [27]. The method is not only suitable 
for time series data, but also for different individual and 
mass sample data – especially suitable for doing analysis 
of correlation and analysis of factor to few variables of 
un-linear correlation. When reference sequence and 
comparison sequence develop and change simultaneously, 
it will show a high grey correlation degree.

In the process of implementation, power industry 
carbon emissions are specifi ed as a reference sequence, and 
infl uencing factors are fi rst assigned comparison sequences. 
To exclude the infl uence of dimension and simplify the 
calculation, reference sequence and comparison sequences 
are converted into proper dimensions. Then we worked 
out the correlation degrees by GRA and the results showed 
that the grey relational degrees are all above the certain 
threshold of 0.6. Therefore, it can give no cause for much 
criticism of the interaction between power industry carbon 
emissions and infl uencing factors.

Support Vector Regression (SVR)

Support vector machine (SVM) is introduced by 
Cortes and Vapnik in 1995 [28] to deal with the problem of 
classifi cation, which is based on the Vapnik-Chervonenkis Fig. 1. Power industry carbon emissions of China, 1995-2014.
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dimension theory and structural risk minimization (SRM) 
of statistical learning theory [29]. This method has been 
extended to the domain of regression and prediction 
problems [30]. Among the current regression methods, 
SVM has several good properties, such as robustness and 
practicability for new samples due to the principle of SRM, 
the absence of local minima via convex optimization, and 
the simplicity in calculation only with simple optimization 
techniques. All these features increase the fi tting degree 
and prediction accuracy of SVR. The architectural 
framework of SVR is shown in Fig. 2. A short introduction 
of how SVR effectively works is presented as follows.

A regression data set is expressed by , 
where  denotes the ith independent variable,  
the ith dependent variable, and m is the number of training 
patterns. SVR, which adopts the same principles as SVM 
for classifi cation except a new type of loss function 
known as ε-insensitive loss function [31], is to construct 
the optimal separating hyper-plane with the error within ε. 
The optimization problem can be formulated as:

     (2)

 
(3)

…where w is the weight vector,  and  are slack 
variables to account for errors,  is a kernel function 
that can map the input space into a higher dimensional 
space,  is used as the error penalty factor that is 
adopted to check the trade-off between the regularization 
empirical and term risk, and b is a real constant.

In the process of solving this nonlinear programming 
problem, there are two important parameters that need 
to be determined. One is penalty parameter c mentioned 
above and the other is gamma (g) in kernel function. The 
initial parameters are often randomly given or dependent 
on experience; therefore, the forecasting precision of 
SVR is limited. In addition, although the method of cross 
validation (CS) to defi ne c and g can overcome over-fi tting 
and improve prediction performance, the convergence 

speed is very slow. Hence, a new PSO is proposed to 
accelerate convergence and improve forecast precision in 
this paper.  

Improved Particle Swarm Optimization 
(IPSO)

As a new branch of evolution algorithms, PSO was 
fi rst developed by Eberhart and Kennedy [32] and is 
an effective intelligence algorithm that simulates the 
swarm behavior of birds. This evolutionary algorithm, 
which has been demonstrated as a powerful tool for 
solving optimization problems, is to fi nd the solutions 
of a population represented by particles. For particle 
optimization, each particle represents a potential solution 
result, and each particle corresponds to a fi tness value 
through an objective function determining the speed 
of particles determined in the direction and distance of 
a particle. These particles can coexist and they evolve 
simultaneously with their neighboring particles [33]. For 
the renewal of speed and position of each particle, certain 
formulas are shown as follows:

 (4)

             (5)

…where d = 1, 2, … , D represents dth dimensional 
space, i = 1, 2, … n refers to ith particle, k indicates an 
iteration count, ω denotes the inertial weight, c1 is the 
cognitive scaling parameter and c2 is the social scaling 
parameter, r1 and r2 are random numbers uniformly 
distributed between 0 and 1,  
and  respectively refer to the 
position and velocity of the ith particle, and pbest and 
gbest are respectively the individual extremum and the 
global extremum.

Although PSO has high convergence speed and high 
universality, it has the disadvantages of easy premature 
convergence, low search precision, and low effi ciency of 
iteration [34-35]. In order to overcome these shortcomings, 
this paper will utilize the variation of ideas of genetic 
algorithm (GA) [36], and the mutation operation will be 
introduced in the PSO, that is reinitializing some variables 
with a certain probability. The mutation operation widens 
the constantly shrinking population search space in 
iteration so that particles can jump out of the previously 
searched optimal value position, and the search can be 
carried out in a larger space while preserving the diversity 
of the population as well as improving the algorithm to 
fi nd the possibility of a better value position. Therefore, 
a simple mutation operator is introduced on the basis 
of ordinary PSO algorithm, and the particles will be 
reinitialized with a certain probability after each particle 
update.

Fig. 2. Architectural framework of SVR.
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IPSO-SVM Model

In this section, power industry carbon emissions 
forecasting models incorporating IPSO and SVM are 
constructed as shown in Fig. 3. This paper chooses the 
sigmoid kernel function to map the original feature space 
into a high-dimensional space. And the epsilon in loss 
function of epsilon-SVR is set to 0.01. The related data 
from 1995 to 2009 is selected as training samples, and 
the remaining data from 2010 to 2014 is regarded as test 
samples.

According to the IPSO-SVM model, the combinatory 
optimization of parameters can be acquired as follows:
 – Step 1: Initialize the parameters of IPSO

Set the initial population size to 20, and the maximum 
number of iteration is 100 times, and mutation probability 
is set to 0.6. Moreover, the range of search space is [-5, 5] 
and velocity range is [-1, 1].
 – Step 2: Calculate the fi tness values 

After adopting training error as the fi tness function, 
calculate the fi tness values of each particle. Then through 
comparing the fi tness values, update the individual and 
global extremes, respectively.
 – Step 3: Update parameters

According to formulae (4) and (5), update the speed 
and position of each particle.
 – Step 4: Introduce mutation operation

Through the mutation operation, expand population 
search space. And then reselect the individual extremum 
and the global extremum.
 – Step 5: Output the optimal solution

Sort all particle fi tness values and fi nd the current 
optimal solution. Repeat steps 2-4 up to the maximum 
number of iterations. Output the global optimal solution 
according to the optimal parameters and establish the 
power industry carbon emissions forecasting model.

Results and Discussion

Description of Scenarios 

According to the results of GRA, this paper designs 
scenarios based on different adjustment rates of economic 
growth, urbanization rate, total electricity consumption, 
net coal consumption rate, and thermal power installed 
capacity. The details of scenario settings are described as 
follows.

Economic Growth

At present, China’s economy steps into the “new 
normal” phase after the economy’s dramatic expansion 
over the previous two decades, as it is growing in a 
manageable and relatively balanced manner. In the dual 
pressures of economic downturn and steady growth, 
growth of China is facing a new challenge. Under this 
circumstance, the Chinese government takes a series of 
effi cient measures to stimulate economic growth, such 
as implementation of the “Belt and Road” strategy, 
regional integration of Beijing-Tianjin-Hebei, reaction 
of the development of the Russian East Area, and the 
rejuvenation of northeast. China formulated “The 13th 

Five-Year Plan” for social and economic development 
of the future fi ve years on 3 November 2016. It has been 
proposed that the target average annual economic growth 
should not below 6.5% in the next fi ve years. Taking into 
account both China’s own actual development and the 
development plan mentioned, this paper respectively sets 
up three states – low-speed, medium-speed, and high-
speed – for GDP growth, which correspond to growth 
rates of 6.5%, 6.8%, and 7% according to the growth rate 
defi ned and estimating the values of real GDP in different 
schemes from 2016 to 2020. The above results are shown 
in Table 1.

Urbanization Rate

Along with economic development, the stage of 
Chinese urbanization goes to accelerate development. But 
compared to developed countries, the level of urbanization 
is still relatively backward. Chinese premier Li Keqiang 
points out that China’s urbanization rate is just over 50%, 
and if calculated by household registered population, 
it is just about 35%, which is far lower than developed 

Fig. 3. Flowchart of the proposed model.

Year Low-speed Medium-speed High-speed

2016 117,696.8298 118,028.3702 118,249.3971

2017 125,347.1237 126,054.2993 126,526.8549

2018 133,494.6868 134,625.9917 135,383.7347

2019 142,171.8414 143,780.5591 144,860.5961

2020 151,413.0111 153,557.6371 155,000.8379

Table 1. Actual GDP, 2016-20 (unit: hundred million yuan).
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countries with the near average level of 80%. With the 
deepening reform of the household registration system 
and the increasing recognition of a city’s function, the 
urbanization level of China will keep steadily increasing. 
The 13th Five-Year Plan anticipates that China’s 
urbanization rate will reach 60% or even more by 2020. 
In view of this, the growth rate of urbanization is set to 
the low and high categories from 2016 to 2020. The above 
results are shown in Table 2.

Total Electricity Consumption

 As the rain glass of the economy, total electricity 
consumption refl ects the economic development level in 
a country. The amount of total electricity consumption 
increased to 569 million KW in 2015 from 101 million 
KW, with 20.79% annual increasing degree, on average. As 
the economy develops and living standards improve, the 
demand for electricity will grow continuously and steadily. 
In December 2016 the National Development and Reform 
Commission (NDRC) and National Energy Board (NEB) 
of China jointly issued the Electric Power Development 
Planning in the 13th Five-Year Plan, which clearly points 
out that total electricity consumption is expected to reach 
680-720 million KW, with an average growth of 3.6-4.8%. 
For this reason, this paper establishes two kinds of states – 
low-speed and high-speed – which correspond to growth 
rates of 3.6%and 4.8%, then computes low and high 
schemes of the total electricity consumption from 2016 to 
2020. And the results are displayed in Table 3. 

Net Coal Consumption Rate

The net coal consumption rate is not only the 
critical economical examination indicator but also the 

extraordinary important technique index for power plants. 
With the implementation of energy conservation, small 
units out of the grid and the adjustment of internal industrial 
structure of thermal power generation, great-capacity and 
high-parameter thermal power generating units are more 
and more useful, which promotes the reduction of net coal 
consumption. The Chinese government attaches great 
importance to the role of the net coal consumption rate 
reduction in power industry, and has set specifi c goals that 
promote reducing the net coal consumption rate to below 
310 g/kW•h by 2020 for active coal-fi red units after the 
transformation. In accordance with the goals, the annual 
net coal consumption rates are shown below. And the 
results are displayed in Table 4.

Thermal Power Installed Capacity

For the last few years the thermal power installed 
capacity gradually decreased because of the development 
of new energy power generation such as wind, solar, and 
nuclear power. But the dominant role of thermal power 
will not change in the short term, which is restrained by a 
series of infl uencing factors – such as resource endowment, 
high cost, and technical level – causing thermal power 
installation capacity proportion to dip to 67.3% in 2014. 
The 13th Five-Year Plan for power industry explicitly 
points out that the total installed capacity will reach 
2 billion kW•h and the thermal power installed capacity 
proportion will drop to 61% with an annual decreasing 
rate of 4% in 2020. Aiming at this goal, this paper sets up 
three kinds of situations and carries on the annual thermal 
power installed capacity separately. And the results are 
displayed in Table 5.

As shown in Table 6, according to different economic 
growth rates, the three main scenarios for China's power 

Year Low-speed High-speed

2016 0.5688 0.5710

2017 0.5766 0.5810

2018 0.5844 0.5910

2019 0.5922 0.6010

2020 0.6000 0.6110

Table 2. Urbanization rate, 2016-20.

Year Low-speed High-speed

2016 589.825880 596.657840

2017 611.059612 625.297416

2018 633.057758 655.311692

2019 655.847837 686.766654

2020 679.458359 719.731453

Table 3. Total electricity consumption, 2016-20 (unit: million KW).

Year Low-speed High-speed

2016 314 314

2017 313 312

2018 312 311

2019 311 309

2020 310 308

Table 4. Net coal consumption rate, 2016-20 (unit: g/kW•h).

Year Low-speed High-speed

2016 10,484.32 10,524.32

2017 10,913.24 10,993.24

2018 11,342.16 11,462.16

2019 11,771.08 11,931.08

2020 12,200.00 12,400.00

Table 5. Thermal power installed capacity (unit: million KW).
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industry – the baseline scenario (BS), the optimization 
scenario (OS), and the enhanced scenario (ES) – are 
designed. Then 48 series are provided in this study 
through a combination of the three main scenarios and the 
variation rate of each index set out above.

Model Performance Evaluation

To corroborate the excellent performance of the IPSO-
SVM model, GM (1,1) and BP neural network model are 
also employed to predict carbon emissions. Then, two 
criteria – mean absolute percentage error (MAPE) and 
the coeffi cient of determination (R2) – are selected to 
quantitatively measure the performance of the involved 
models. With the interval of [0, 1], the closer the value of 
R2 is to 1, the better the performance of the model. The 
formulas of the aforementioned criteria are presented as 
follows:

            (6)

          (7)

…where n denotes the number of the carbon emissions to 
be forecast,  represents the real value in the ith year,  
is the forecasted value, and  is the average value of the 
forecasted value.

Fig. 4 shows the forecast results with different models 
from 2010 to 2014, where IPSO-SVM has a higher fi tting 
degree. Since GM (1, 1) relies heavily on its original 
data, without consideration of the infl uencing factors, its 
forecast results take on an approximately linear increasing 
trend. The reason why the prediction results of the BP 
model misfi t the wave characteristics of carbon emissions 
tends to be attributed to the shortcoming that the result of 
BP is easy to trap in local optimum. From Table 7, it can 
be concluded that IPSO-SVM shows high reliability and 

high accuracy based on the assessment results of MAPE 
and R2, since the model has the ability to approach any 
nonlinear function precisely. Based on the above reasons, 
this paper will employ the IPSO-SVM model to forecast 
carbon emissions for China’s power industry up to 2020.

Forecast of Carbon Emissions 
in Baseline Scenario

In the baseline scenario, economic growth is assumed 
to be at a low rate through the 2016, and there are 16 
kinds of scenario sequences. The predicted values of each 
sequence for China’s power industry carbon emissions are 
shown in Fig. 5.

From Fig. 5, it can be seen that the prediction results of 
carbon emissions from 2016 to 2020 show an upward trend 
for all scenario sequences. The results reveal that there is 
a very large range for the variation of the value estimate 
of carbon emissions. The minimum of carbon emissions 
occurs in scenarios BS2, in which the urbanization rates are 
at a high speed and total electricity consumption, net coal 
consumption rates, and thermal power installed capacity 
are at low speed, low-speed, and high-speed, respectively, 
and the forecasting value in 2020 is 128,928.27 kt. While 
the maximum carbon emissions exists in scenario BS6, 
where the urbanization rates are at low speed and total 
electricity consumption, net coal consumption rate, and 
thermal power install capacity are at high speed, low 
speed, and high speed, respectively, and the estimation 
value in 2020 is 133,907.68 kt. A comparison of the two 
series indicates that total electricity consumption plays an 
important role in carbon emissions increase. Furthermore, 
through the comparison of BS2 and BS3, BS6 and BS7, 

Fig. 4. Comparison of forecast results with different models.

Index IPSO-SVM GM (1,1) BP

MAPE 0.156 0.033 0.372

R2 0.9651 0.921 0.941

Table 7. Error analysis of carbon emissions.

Fig. 5. Prediction values of China’s power industry carbon 
emissions for the baseline scenarios, 2016-20.
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BS10 and BS11, BS14 and BS15, it can be found that 
the contribution of the net coal consumption rate on the 
reduction of carbon emissions is higher than the thermal 
power installed capacity.

Forecast of Carbon Emissions 
in Optimization Scenario

The optimization scenario encompasses 16 kinds of 
series, and the economic development of these series is 
set to the medium-speed. The predicted values of China’s 
power industry carbon emissions are displayed in Fig. 6.

The prediction results illustrate that there is a rising 
trend in power industry carbon emissions within the 
year frame of 2016-20. Compared to forecast results of 
the baseline scenario, the range of fl uctuation is much 
larger for the optimization scenario. The minimum of 
carbon emissions is 128,691.59 kt with a low speed 
adjustment rate of the urbanization rate, total electricity 
consumption, net coal consumption rate, and thermal 
power installed capacity, which appear in scenarios 
OS9. The maximum carbon emissions occur in scena-
rios OS3, in which the urbanization rates are at high 
speed and total electricity consumption, net coal 
consumption rates, and thermal power installed capacity 
are at low speed, high speed, and low speed, and the 
prediction value in 2020 is 136,345.15 kt. Contrast the two 
different scenarios, and it is noteworthy that high-speed 
urbanization will drive a tremendous amount increase 
of carbon emissions, which exceeds the inhibitory effect 
of the net coal consumption rate reduction. There is a 
paramount reason for this phenomenon, namely that 
the adjustment rate of the net coal consumption rate is 
relatively low. The same conclusion can also be reached 
by comparing scenarios OS4 and OS10. In addition, 
by comparing OS2 and OS3, OS6 and OS7, OS10 and 
OS11, and OS14 and OS15, the contribution of the net 
coal consumption rate adjustment on carbon emissions 
reduction is higher than that of the thermal power installed 
capacity adjustment.

Forecast of Carbon Emissions 
in Enhanced Scenario

In the enhanced scenario, the pace of economic 
development is supposed to at a high-speed, and there are 
altogether 16 kinds of situations in this case. The predicted 
values of China’s power industry carbon emissions are 
present in Fig. 7.

From Fig. 7, it can be concluded that no matter 
what the situation, carbon emissions continue to expand 
during the study period. There are great differences in the 
extent of variation of the predicted carbon emissions in 
different situations. The minimum of carbon emissions 
exists in scenarios ES9, in which urbanization rates, total 
electricity consumption, net coal consumption rates, 
and thermal power installed capacity are all at a low 
speed, and the forecasting value in 2020 is 128,913.96 
kt. Meanwhile, maximum carbon emissions emerges 
in scenario ES4, where the urbanization rates are at 
high speed and total electricity consumption, net coal 
consumption, and thermal power installed capacity are at 
low speed, high speed, and high speed,  respectively, and 
the prediction value in 2020 is 149,137.32 kt. Combined 
with differences between the two situations, it elucidates 
that the accelerating development of urbanization and the 
quick increase of thermal power installed capacity exert 
positive infl uences on the increase of carbon emissions.

Comparison of Scenarios

By analyzing and comparing and combining 
prediction results of the three scenarios, it can be found 
that carbon emissions of China’s power industry will 
reach 128,691.59-149,137.32 kt in 2020. However, carbon 
emissions of China’s power industry and economic growth 
demonstrate no coherence, and higher economic growth 
does not mean higher carbon emissions. The comparisons 
of BS1 and OS1, BS6 and OS6, BS7 and OS7, BS8 and 
OS8, BS9 and OS9 and ES9, OS12 and ES12, and OS16 

Fig. 7. Prediction values of China's power industry carbon 
emissions for enhanced scenarios, 2016-20.

Fig. 6. The prediction values of China’s power industry carbon 
emissions for optimization scenarios, 2016-20.
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and ES16 can corroborate the phenomenon of decoupling 
between carbon emissions of China’s power industry 
and economic growth. The main reasons may be that the 
mode of China’s economic growth has been transforming 
from extensive and intensive, and new energy industry 
has achieved rapid development in recent years due to its 
environmental advantages and falling costs.

Conclusions

On the basis of the IPSO-SVM model, this study 
constructs a scenario analysis model of China’s power 
industry carbon emissions. Due to the volatility of carbon 
emissions, SVM is exploited to simulate and forecast 
carbon emissions. The IPSO model is employed to choose 
the fi ne-tuned parameters of SVM. Considering the carbon 
emissions affected and restricted by multitudinous factors, 
GRA is used to identify and analyze the major infl uencing 
factors as the inputs of the proposed model. By comparing 
different models, the IPSO-SVM model shows the best 
forecasting performance.

Based on different adjustment rates of economic 
growth, the urbanization rate, total electricity consumption, 
the net coal consumption rate, and thermal power installed 
capacity, this study designs three kinds of carbon emission 
scenarios (including 48 development scenarios) to 
forecast carbon emissions of China’s power industry up 
to 2020. Different development scenarios have different 
prediction results that indicate that carbon emissions of 
China’s power industry will be 128,691.59-149,137.32 kt 
in 2020. The infl uencing level of each factor differs a lot in 
different development scenarios. Furthermore, there exists 
a certain decoupling effect between carbon emissions of 
China’s power industry and economic growth.

Acknowledgements

 This study was supported by the Humanities and 
Social Sciences Planning Foundation of the Ministry of 
Education of China (grant No. 16YJA790052).

References 

1. WHITE C.M., STRAZISAR B.R., GRANITE E.J., 
HOFFMAN J.S., PENNLINE H.W. Separation and Capture 
of CO2 from Large Stationary Sources and Sequestration in 
Geological Formations-Coalbeds and Deep Saline Aquifers. 
Journal of the Air & Waste Management Association, 53, 
645, 2003.

2. IEA, 2007a. World Energy Outlook 2007: China and India 
Insights. International Energy Agency: Paris, 2007.

3. BIROL F. World Energy Outlook 2013. International Energy 
Agency: Paris, 2013.

4. YANSHA Y., GUNFEN H., WEIBIN L., JIANG W. 
Research on Several Problems of Power Development in the 
12th Five-Year Plan, China Electric Power Press: Beijing, 
China, 2010. 

5. SCHMALESEE R., STOKER T.M., JUDSON R.A. Word 
carbon dioxide emission: 1950-2050. Review of Economics 
& Statistics, 80, 15, 1998.

6. AROURI M.E.H., YOUSSEF A.B., HENNI H.M., RAULT 
C. Energy consumption, economic growth and CO2 emission 
in Middle East and North African countries. Energy Policy, 
45, 342, 2012.

7. SABOORI B., SULAIMAN J., MOHD S. Economic growth 
and CO2 emissions in Malaysia: A cointegration analysis of 
the environment Kuznets curve. Energy Policy, 51 (4), 184, 
2012.

8. GALEOTTI M., LANZA A., PAULI F. Reassessing the 
environmental Kuznets curve for CO2 emissions: a robustness 
exercise. Ecological Economics, 57 (1), 152, 2006.

9. WANG S.S., ZHOU D.Q., ZHOU P., WANG Q.W. CO2 
emissions, energy consumption and economic growth in 
China: a panel data analysis. Energy Policy, 39 (9), 4870, 
2011.

10. WU H., GU S.Z., GUAN X.Y., LU S.S. The relationship 
between the carbon emissions of fossil energy consumption 
and the economic growth in China. Journal of Cleaner 
Production, 3, 381, 2013.

11. MI Z.F., PAN S.Y., YU H., WEI Y.M. Potential impacts of 
industrial structure onenergy consumption and CO2 emission: 
a case study of Beijing. Journal of Cleaner Production, 103, 
455, 2015.

12. DALY H.E., SCOTT K., STRACHAN N., BARRETT J. 
The indirect CO2 emission implications of energy system 
pathways: linking IO and times models for the UK. 
Environmental Science Technology, 49 (17), 10701, 2015.

13. SHAHBAZ M., SBIA R., HAMDI H., OZTURK I. 
Economic growth, electricity consumption, urbanization 
and environmental degradation relationship in United Arab 
Emirates.  Ecological Indicators, 45 (5), 622, 2014.  

14. FAN Y., LIU L.C., WU G., WEI Y.M. Analyzing impact 
factors of CO2 emissions using the STIRPAT model. 
Environmental Impact Assessment Review, 26 (4), 377, 
2006.

15. SU B., ANG B.W. Multi-region comparisons of emission 
performance: the structural decomposition analysis 
approach. Ecological Indicators, 67, 78, 2016.

16. FARHANI S., CHAIBI A., RAULT C. CO2 emissions, 
output, energy consumption, and trade in Tunisia. Economic 
Modelling, 38, 426, 2014.

17. AL-MULALI U., SHEAU-TING L. Econometric analysis 
of trade, exports, imports, energy consumption and CO2 
emission in six regions. Renewable & Sustainable Energy 
Reviews, 33 (2), 484, 2014.

18. WANG Z., DANG Y.G. Research on carbon emission 
prediction in Jiangsu Province based on an improved 
GM (1, 1) model. IEEE International Conference on Gray 
System, 93, 2013.

19. ZHENGXIN W., DEJUN Y. Forecasting Chinese carbon 
emissions from fossil energy consumption using non-linear 
grey multivariable models. Journal of Cleaner Production, 
142, 600, 2017.

20. DU Q., CHEN Q., YANG R. Forecast carbon emissions 
of provinces in China based on logistic model. Resources 
Environment in the Yangtze Basin, 122, 143, 2013.

21. SUN W., LIU M. Prediction and analysis of the three major 
industries and residential consumption CO2 emissions based 
on least squares support vector machine in China. Journal of 
Cleaner Production, 122, 144, 2016.

22. LIU X., MAO G., REN J., LI R.Y.M., GUO J., Zhang, L. 
How might China achieve its 2020 emissions target? A 
scenario analysis of energy consumption and CO2 emissions 



449Scenario Analysis of Carbon Emissions...

using the system dynamics model. Journal of Cleaner 
Production, 103, 401, 2015.

23. GAMBHIR A., SCHULZ N., NAPP T., TONG D., 
MUNUERA L. A hybrid modeling approach to develop 
scenarios for China's carbon dioxide emissions to 2050. 
Energy Policy, 59 (59), 614, 2013.

24. ZHANG Y., WANG C., WANG K., CHEN J. CO2 emission 
scenario analysis for China’s electricity sector based on 
LEAP software. Journal of Tsinghua University, 47(3), 365, 
2007.

25. YUAN J., NA C., HU Z., LI P. Energy Conservation and 
Emissions Reduction in China’s Power Sector: Alternative 
Scenarios Up to 2020. Energies, 9 (4), 266, 2016.

26. IPCC 2006, 2006 IPCC Guidelines for National Greenhouse 
Gas Inventories, Prepared by the National Greenhouse Gas 
Inventories Programme, Eggleston H.S., Buendia L., Miwa 
K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan.

27. LIU S.F., CAI H., YANG Y.J., YING C. Research progress 
of grey relational analysis model. Systems Engineering & 
Theory Practice, 33, 2041, 2013.

28. CORTES C., VAPNIK V. Support-vector networks. Machine 
Learning, 20 (3), 273, 1995.

29. CHANG C.C., LIN C.J. LIBSVM: A library for support 
vector machines. ACM Trans. Acm Transactions on 
Intelligent Systems & Technology, 2 (3), 27, 2011.

30. SMOLA A., VAPNIK V. Support vector regression machines. 
Advances in Neural Information Processing Systems, 9, 155, 
1977.

31. VAPNIK V.N., GOLOWICH S.E., SMOLA A. Support 
Vector Method for Function Approximation, Regression 
Estimation, and Signal Processing. Advances in Neural 
Information Processing Systems, 281, 1996.

32. POLI R., KENNEDY J., BLACKWELL T. Particle swarm 
optimization. Swarm Intelligence, 1 (1), 33, 2007.

33. JIN G., FAN Z.W., WANG C., GUO W.P., LAI X.M., CHEN 
M.Z. A minimum-of-maximum relative error support vector 
machine for simultaneous reverse prediction of concrete 
components. Computer &Structures, 172 (C), 59, 2016.

34. LIANG J.J., QIN A.K., SUGANTHAN P.N., BASKAR S. 
Comprehensive learning particle swarm optimizer for global 
optimization of multimodal functions. IEEE Transactions on 
Evolutionary Computation, 10 (3), 281, 2006.

35. JORDEHI A.R. Enhanced leader PSO (ELPSO): a new PSO 
variant for solving global optimization problems. Applied 
Soft Computing, 26 (26), 401, 2015.

36. SUN W., XU Y. Using a back propagation neural network 
based on improved particle swarm optimization to study 
the infl uential factors of carbon dioxide emissions in Hebei 
Province, China. Journal of Cleaner Production, 112, 1282, 
2016.


